Este artículo ha sido escrito por Oscar García Cagigas

En este artículo introducimos las Cadenas de Markov como la base de algunas estrategias utilizadas por la gestora Renaissance de Jim Simons, probablemente el único matemático que ha conseguido descifrar los mercados financieros. En el artículo se aplica una cadena de Markov muy simple de 4 estados para localizar patrones en los retornos de los precios que pueden ser explotados mediante una sencilla estrategia.

Es posible que haya oído hablar de Jim Simons, un matemático que trabajó descifrando códigos para la agencia nacional de seguridad americana durante la guerra de Vietnam aparte de contribuir a la teoría de cuerdas y a muchas otras áreas de la física.

Aunque Jim Simons es más conocido por su gestora Renaissance, creada en 1988 y que opera el Medallion Fund, un fondo que casi nunca pierde dinero. De hecho, el peor resultado en periodos de 5 años ha sido de un -0.5%. Invertir 1.000 dólares cuando comenzó el fondo ahora serían 13.8 millones de dólares. Impresionante…

Pues gran parte de la operativa de Jim Simons está basada en Cadenas de Markov, aunque evidentemente a un nivel matemático muy avanzado. Hoy solamente rascaremos un poco en la superficie de este tema.

De qué se trata

Una cadena de Markov es un proceso estadístico que establece cierta dependencia entre un estado y el estado anterior. Es decir, solo tiene memoria del estado precedente y lo demás no cuenta.

En finanzas esto es sencillo de entender. Supongamos que un estado significa retornos positivos. Y el otro estado, lógicamente, son retornos negativos. Así que una cadena de Markov podría decirnos cuál es la probabilidad de que hoy haya subidas si ayer hubo caídas. A continuación vamos a ver un ejemplo fuera de las finanzas que nos permitirá entenderlo:

El Mercadona de VillaArriba sabe que el 20% de la gente que compra fregasuelos un mes no vuelve a comprarlo al mes siguiente. Y también saben que el 30% de los que no han comprado fregasuelos este mes sí que lo comprará el mes siguiente. A este Mercadona acuden 1000 personas este mes, y de esos 100 compraron fregasuelos. ¿Cuántos lo comprarán el mes próximo? ¿Y dentro de dos meses?

En la imagen 1 vemos los estados y sus probabilidades

Imagen 1: Comprando fregasuelos

1

Vemos los estados y sus probabilidades de los que volverán a comprar fregasuelos y de los que no. Fuente: Elaboración propia

Dicho de otra forma: El 80% de los que compran fregasuelos este mes repiten su compra al mes siguiente, y el 70% de los que no compran fregasuelos este mes tampoco lo compran al mes siguiente. En realidad es un ejemplo bastante realista. En una pareja que viven juntos suele ser la misma persona la que compra este tipo de productos y la otra nunca o casi nunca se ocupa de ello.

Con la información aportada se puede construir la matriz de probabilidades

2

Que si la multiplicamos por la matriz de personas que acuden al Mercadona pues nos tiene que dar el número de personas que el mes siguiente compra (C) o no compra (N). De la siguiente manera:

3

Para multiplicar estas matrices hay que recordarse del algebra, ya sabe, filas por columnas...Lo más sencillo es utilizar Excel.

En Excel usamos la función MMULT(), seleccionamos la fila y luego la matriz de probabilidades. El primer elemento sale 350. Si marcamos los dos elementos, pulsamos F2 y luego Ctrl+Shift+Enter pues nos sale el vector fila completo: (350, 650).

La solución por tanto es que el primer mes comprarán fregasuelos 350 personas y 650 no lo compraran.

¿Y el siguiente mes? Para ello hay que tener en cuenta que al igual que en probabilidades simples, la probabilidad de una segunda ocurrencia de algo es la probabilidad inicial multiplicada por sí misma, así que para el segundo mes tenemos que calcular la matriz producto:

4

Para esto se puede hacer el mismo procedimiento en Excel pero ahora marcaríamos 4 casillas para tener el resultado anterior de 2x2.

De la misma manera calculamos el número de personas para el segundo mes:

5

Es decir, el segundo mes 475 personas comprarán fregasuelos y 525 no lo comprarán.

Cómo aplicamos todo esto a los mercados

Pues como decía anteriormente podemos pensar en algo muy sencillo con dos estados. Cogemos los retornos del SP500 desde 2001; es decir, 20 años, y con la función JERARQUIA de Excel hacemos un ranking por retornos, de menor a mayor. Si dividimos el número de ranking entre el total de datos (5088) entonces tenemos el percentil que ocupa y así podemos calcular su estado de los dos posibles (Imagen 2)

Imagen 2: Retornos del SP500

6

Figura 4. Retornos del SP500, distribución empírica (percentiles) y estados que dividen a la muestra en dos partes iguales. Fuente: Elaboración propia

En este punto es posible que vd piense que me estoy complicando demasiado, ya que solo serían retornos positivos o negativos, así que sobraría el ranking. Pero suceden dos cosas.

  • No tiene por qué haber simetría (el cero no tiene que dividir los resultados en dos partes iguales)
  • El método del ranking nos va a servir para aumentar el número de estados posteriormente

Ahora con una función CONTAR.SI ya podemos obtener la matriz de ocurrencias

52

Si queremos las probabilidades solo hay que dividir entre el total de datos. Si el mercado fuera 100% aleatorio entonces esperaríamos 5088/4 = 1272 ocurrencias de cada estado. Sin embargo vemos que es ligeramente más probable pasar del estado 1 al 2 (y viceversa) que de permanecer en el mismo estado.

De hecho, sabemos que el mercado tiene una cierta tendencia a girarse al lado contrario del cierre anterior.

En la imagen 2 vemos cómo el primer día de trading de 2001 se sube un 4.87% (estado 2) y al día siguiente se tiene un retorno negativo perteneciente al estado 1. Este día muy alcista está prácticamente en lo más alto de los percentiles, con un 99.37%.

Y luego tenemos el 5 de enero que se cae un 3.44%, es el percentil 1.55% y por tanto el estado 1. Al día siguiente hay un cambio al estado 2.

Tal y como comentaba esto no está necesariamente centrado en el cero así que mirando entre los datos veo que el percentil del 50% es un retorno del 0.08%. Retornos mayores son el estado 2; y retornos menores, aunque sean positivos, son el estado 1.

Añadiendo estados

Ahora que hemos explicado el procedimiento ya se puede extender a más estados, y no hace falta ni siquiera saber cuáles son los umbrales entre un estado y el siguiente ya que como acabo de explicar esto depende del total de los datos. El resultado para 4 estados es el siguiente

58

Que nos dice que es muy probable que después de un día muy bajista (estado 1) venga un día muy alcista (estado 4 con 428 ocurrencias). Y será raro que venga un día intermedio-bajista (estado 2 con solo 218 ocurrencias).

En resumidas cuentas

Así que para terminar me voy a construir un sistema de trading muy sencillo: Si hoy es estado 1 entonces mañana compro el SP500; es decir, del cierre de hoy al cierre de mañana. Si ayer hubo estado 1 entonces hoy se anota la ganancia del día pues se asume que es lo que se gana al hacer la compra (no se incluyen comisiones y se asume que operamos justo por el nominal - imagen 3).

Imagen 3: titulo - Estrategia consistente en comprar al día siguiente de un estado 1.

8
Descripción - Por ejemplo, el 4 de enero hay un estado 1 y al día siguiente se anota una pérdida del 3.44% en el día. Ese mismo día también es estado 1 así que se repite la compra al día siguiente, esta vez con retorno del 0.41%. Aquí cada operación dura un día solo. Fuente: Elaboración propia

Y ahora ya puedo acumular los resultados de la columna que tiene la estrategia. La simulación comienza con capital inicial de 100.000 dólares, y resulta la curva de capital (gráfico 1)

Gráfico 1: Curva de capital

9

Curva de capital de una estrategia consistente en comprar al día siguiente del estado 1 de la cadena de Markov. Fuente: Elaboración propia

Leer el artículo completo

Toda información publicada en TRADERS’ es únicamente para fines educativos. No pretende recomendar, promocionar o de cualquier manera sugerir la eficacia de cualquier sistema, estrategia o enfoque de trading. Se recomienda a los traders que realicen sus propias investigaciones, desarrollo y comprobaciones para determinar la validez de un concepto para el trading. El trading y la inversión conllevan un alto nivel de riesgo. Cualquier persona con la intención de operar en los mercados financieros debe entender y aceptar estos riesgos. El rendimiento obtenido en el pasado no es garantía de los resultados futuros.

Education feed

Contenido Recomendado

EUR/USD Pronóstico Semanal: El BCE decepcionó, ¿seguirá la Fed ese ejemplo?

El Banco Central Europeo no aclaró su nueva orientación a futuro. La Reserva Federal de EE.UU. podría insinuar una reducción en la compra de bonos antes de fin de año. El EUR/USD es técnicamente bajista y podría atravesar el nivel de 1.1700.

EUR/USD Noticias

GBP/USD Pronóstico Semanal: Apuesta por el Big Bang de Gran Bretaña y decisión de la Fed son críticas

El GBP/USD ha caído a mínimos de cinco meses debido a que los temores por el covid se apoderaron de los mercados. La decisión de la Fed, las noticias del Brexit y los desarrollos en torno al covid están listos para sacudir al par. 

GBP/USD Noticias

USD/JPY Pronóstico Semanal: Decisión de la Fed, covid en los Juegos Olímpicos y rendimientos pueden sacudir al par

El USD/JPY se ha estado moviendo a la par con los rendimientos estadounidenses, cayendo a medida que el miedo se apodera de los mercados. La decisión de la Fed, el PIB de EE.UU. y la rápida propagación de la variante Delta centran la atención de los inversores.

USD/JPY Noticias

Contenido recomendado

La Fed, otra vez en el centro de atención

Los días previos a las reuniones de política monetaria de la Fed dan lugar a un sinfín de rumores, y esta vez no es la excepción. Los mercados dieron, entre la semana anterior y los inicios de esta semana, una muestra de lo que puede suceder. La Fed seguramente ha tomado nota.

Mercados Noticias

EE.UU.: PMI preliminar de julio mixto, con inesperada caída en sector servicios y suba en manufacturero

El reporte preliminar de julio de actividad de PMI mostró datos mixtos. Por un lado el indicador del sector manufacturero registró una suba a 63.1 desde 62.1, siendo que el consenso era por un pequeño retroceso a 62.0

Indicadores Económicos Noticias

AUD/USD Pronóstico Semanal: No hay respiro para el Aussie antes de la Fed

El deterioro de las condiciones económicas en Australia perjudicó al Aussie. El foco está en la Reserva Federal, que puede insinuar una reducción en el programa de compra de bonos. El AUD/USD está preparado para extender su caída en los próximos días.

Cruces Noticias

El precio de Dogecoin pierde una oportunidad, pero DOGE se aferra a las aspiraciones alcistas

El precio de Dogecoin busca romper la racha de pérdidas de seis semanas, ya que actualmente tiene una ganancia del 11% para la semana. El mínimo del 19 de mayo sigue siendo un obstáculo para DOGE, mientras el activo digital persigue una confirmación del doble suelo.

Criptodivisas Noticias

EUR/USD Pronóstico Semanal: El BCE decepcionó, ¿seguirá la Fed ese ejemplo?

El Banco Central Europeo no aclaró su nueva orientación a futuro. La Reserva Federal de EE.UU. podría insinuar una reducción en la compra de bonos antes de fin de año. El EUR/USD es técnicamente bajista y podría atravesar el nivel de 1.1700.

EUR/USD Noticias

Contenido recomendado

Estrategia

Gestión del dinero

Psicología